Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Heliyon ; 10(7): e29196, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38633642

RESUMEN

Clay-reinforced polyvinyl chloride (PVC) composites and nanocomposites are one of the newest and most important compounds studied and used in various applications, including the biomedical, automotive industry, water treatment, packaging, fire retarding, and construction. The most important clays used in the synthesis of these composites are Bentonite, Montmorillonite, Kaolinite, and Illite. The addition of these nanoclays to the PVC matrix improves mechanical properties, thermal stability, and yellowness index properties. In this chapter, a detailed study of PVC and its properties, types of nanoclays and their properties, modification of nanoclays, production methods of composites, and nanocomposites of PVC/clay, their characterization, and applications have been performed. Herein, the types, properties, and applications of PVC/clay nanocomposites, as well as their challenges and future remarks, are reviewed.

2.
Bioengineering (Basel) ; 10(12)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38136029

RESUMEN

Among the various biochemical and biophysical inducers for neural regeneration, electrical stimulation (ES) has recently attracted considerable attention as an efficient means to induce neuronal differentiation in tissue engineering approaches. The aim of this in vitro study was to develop a nanofibrous scaffold that enables ES-mediated neuronal differentiation in the absence of exogenous soluble inducers. A nanofibrous scaffold composed of polycaprolactone (PCL), poly-L-lactic acid (PLLA), and single-walled nanotubes (SWNTs) was fabricated via electrospinning and its physicochemical properties were investigated. The cytocompatibility of the electrospun composite with the PC12 cell line and bone marrow-derived mesenchymal stem cells (BMSCs) was investigated. The results showed that the PCL/PLLA/SWNT nanofibrous scaffold did not exhibit cytotoxicity and supported cell attachment, spreading, and proliferation. ES was applied to cells cultured on the nanofibrous scaffolds at different intensities and the expression of the three neural markers (Nestin, Microtubule-associated protein 2, and ß tubulin-3) was evaluated using RT-qPCR analysis. The results showed that the highest expression of neural markers could be achieved at an electric field intensity of 200 mV/cm, suggesting that the scaffold in combination with ES can be an efficient tool to accelerate neural differentiation in the absence of exogenous soluble inducers. This has important implications for the regeneration of nerve injuries and may provide insights for further investigations of the mechanisms underlying ES-mediated neuronal commitment.

3.
Exp Cell Res ; 431(2): 113766, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37678504

RESUMEN

Stem cells in their natural microenvironment are exposed to biochemical and biophysical cues emerging from the extracellular matrix (ECM) and neighboring cells. In particular, biomechanical forces modulate stem cell behavior, biological fate, and early developmental processes by sensing, interpreting, and responding through a series of biological processes known as mechanotransduction. Local structural changes in the ECM and mechanics are driven by reciprocal activation of the cell and the ECM itself, as the initial deposition of matrix proteins sequentially affects neighboring cells. Recent studies on stem cell mechanoregulation have provided insight into the importance of biomechanical signals on proper tissue regeneration and function and have shown that precise spatiotemporal control of these signals exists in stem cell niches. Against this background, the aim of this work is to review the current understanding of the molecular basis of mechanotransduction by analyzing how biomechanical forces are converted into biological responses via cellular signaling pathways. In addition, this work provides an overview of advanced strategies using stem cells and biomaterial scaffolds that enable precise spatial and temporal control of mechanical signals and offer great potential for the fields of tissue engineering and regenerative medicine will be presented.


Asunto(s)
Señales (Psicología) , Ingeniería de Tejidos , Mecanotransducción Celular , Medicina Regenerativa , Células Madre
4.
Adv Pharm Bull ; 13(2): 385-392, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37342383

RESUMEN

Purpose: Non-viral transfection approaches are extensively used in cancer therapy. The future of cancer therapy lies on targeted and efficient drug/gene delivery. The aim of this study was to determine the transfection yields of two commercially available transfection reagents (i.e. Lipofectamine 2000, as a cationic lipid and PAMAM G5, as a cationic dendrimer) in two breast cell lines: cancerous cells (T47D) and non-cancerous ones (MCF-10A). Methods: We investigated the efficiencies of Lipofectamine 2000 and PAMAM G5 for transfection/delivery of a labeled short RNA into T47D and MCF-10A. In addition to microscopic assessments, the cellular uptakes of the complexes (fluorescein tagged-scrambled RNA with Lipofectamine or PAMAM dendrimer) were quantified by flow cytometry. Furthermore, the safety of the mentioned reagents was assessed by measuring cell necrosis through the cellular PI uptake. Results: Our results showed significantly better efficiencies of Lipofectamine compared to PAMAM dendrimer for short RNA transfection in both cell types. On the other hand, MCF-10A resisted more than T47D to the toxicity of higher concentrations of the transfection reagents. Conclusion: Altogether, our research demonstrated a route for comprehensive epigenetic modification of cancer cells and depicted an approach to efficient drug delivery, which eventually improves both short RNA-based biopharmaceutical industry and non-viral strategies in epigenetic therapy.

5.
Sci Rep ; 13(1): 9963, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37339980

RESUMEN

The skin undergoes the formation of fine lines and wrinkles through the aging process; also, burns, trauma, and other similar circumstances give rise to various forms of skin ulcers. Induced pluripotent stem cells (iPSCs) have become promising candidates for skin healing and rejuvenation due to not stimulating inflammatory responses, low probability of immune rejection, high metabolic activity, good large-scale production capacity and potentials for personalized medicine. iPSCs can secrete microvesicles (MVs) containing RNA and proteins responsible for the normal repairing process of the skin. This study aimed to evaluate the possibility, safety and effectiveness of applying iPSCs-derived MVs for skin tissue engineering and rejuvenation applications. The possibility was assessed using the evaluation of the mRNA content of iPSC-derived MVs and the behavior of fibroblasts after MV treatment. Investigating the effect of microvesicle on stemness potential of mesenchymal stem cells was performed for safety concerns. In vivo evaluation of MVs was done in order to investigate related immune response, re-epithelialization and blood vessel formation to measure effectiveness. Shedding MVs were round in shape distributed in the range from 100 to 1000 nm in diameter and positive for AQP3, COL2A, FGF2, ITGB, and SEPTIN4 mRNAs. After treating dermal fibroblasts with iPSC-derived MVs, the expressions of collagens Iα1 and III transcripts (as the main fibrous extracellular matrix (ECM) proteins) were upregulated. Meanwhile, the survival and proliferation of MV treated fibroblasts did not change significantly. Evaluation of stemness markers in MV treated MSCs showed negligible alteration. In line with in vitro results, histomorphometry and histopathology findings also confirmed the helpful effect of MVs in skin regeneration in the rat burn wound models. Conducting more investigations on hiPSCs-derived MVs may lead to produce more efficient and safer biopharmaceutics for skin regeneration in the pharmaceutical market.


Asunto(s)
Micropartículas Derivadas de Células , Células Madre Pluripotentes Inducidas , Humanos , Ratas , Animales , Células Madre Pluripotentes Inducidas/metabolismo , Transcriptoma , Rejuvenecimiento , Piel/patología , Micropartículas Derivadas de Células/metabolismo
6.
Syst Biol Reprod Med ; 69(4): 320-331, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37018429

RESUMEN

The differential expression and direct targeting of mRNA by miRNA are two main logics of the traditional approach to constructing the miRNA-mRNA network. This approach, could be led to the loss of considerable information and some challenges of direct targeting. To avoid these problems, we analyzed the rewiring network and constructed two miRNA-mRNA expression bipartite networks for both normal and primary prostate cancer tissue obtained from PRAD-TCGA. We then calculated beta-coefficient of the regression-model when miR was dependent and mRNA independent for each miR and mRNA and separately in both networks. We defined the rewired edges as a significant change in the regression coefficient between normal and cancer states. The rewired nodes through multinomial distribution were defined and network from rewired edges and nodes was analyzed and enriched. Of the 306 rewired edges, 112(37%) were new, 123(40%) were lost, 44(14%) were strengthened, and 27(9%) weakened connections were discovered. The highest centrality of 106 rewired mRNAs belonged to PGM5, BOD1L1, C1S, SEPG, TMEFF2, and CSNK2A1. The highest centrality of 68 rewired miRs belonged to miR-181d, miR-4677, miR-4662a, miR-9.3, and miR-1301. SMAD and beta-catenin binding were enriched as molecular functions. The regulation was a frequently repeated concept in the biological process. Our rewiring analysis highlighted the impact of ß-catenin and SMAD signaling as also some transcript factors like TGFB1I1 in prostate cancer progression. Altogether, we developed a miRNA-mRNA co-expression bipartite network to identify the hidden aspects of the prostate cancer mechanism, which traditional analysis -like differential expression- was not detect it.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , Masculino , Humanos , beta Catenina/genética , MicroARNs/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Neoplasias de la Próstata/genética , Factores de Transcripción , Redes Reguladoras de Genes , Perfilación de la Expresión Génica , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética
7.
Int Immunopharmacol ; 117: 109934, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36867924

RESUMEN

The worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has urged scientists to present some novel vaccine platforms during this pandemic to provide a rather prolonged immunity against this respiratory viral infection. In spite of many campaigns formed against the administration of mRNA-based vaccines, those platforms were the most novel types, which helped us meet the global demand by developing protection against COVID-19 and reducing the development of severe forms of this respiratory viral infection. Some societies are worry about the COVID-19 mRNA vaccine administration and the potential risk of genetic integration of inoculated mRNA into the human genome. Although the efficacy and long-term safety of mRNA vaccines have not yet been fully clarified, obviously their application has switched the mortality and morbidity of the COVID-19 pandemic. This study describes the structural features and technologies used in producing of COVID-19 mRNA-based vaccines as the most influential factor in controlling this pandemic and a successful pattern for planning to produce other kind of genetic vaccines against infections or cancers.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , Vacunas contra la COVID-19 , COVID-19/prevención & control , Pandemias/prevención & control , Estudios Prospectivos , SARS-CoV-2 , ARN Mensajero , Vacunas de ARNm
8.
Bioeng Transl Med ; 8(2): e10383, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36925674

RESUMEN

Tissue engineering (TE) is currently considered a cutting-edge discipline that offers the potential for developing treatments for health conditions that negatively affect the quality of life. This interdisciplinary field typically involves the combination of cells, scaffolds, and appropriate induction factors for the regeneration and repair of damaged tissue. Cell fate decisions, such as survival, proliferation, or differentiation, critically depend on various biochemical and biophysical factors provided by the extracellular environment during developmental, physiological, and pathological processes. Therefore, understanding the mechanisms of action of these factors is critical to accurately mimic the complex architecture of the extracellular environment of living tissues and improve the efficiency of TE approaches. In this review, we recapitulate the effects that biochemical and biophysical induction factors have on various aspects of cell fate. While the role of biochemical factors, such as growth factors, small molecules, extracellular matrix (ECM) components, and cytokines, has been extensively studied in the context of TE applications, it is only recently that we have begun to understand the effects of biophysical signals such as surface topography, mechanical, and electrical signals. These biophysical cues could provide a more robust set of stimuli to manipulate cell signaling pathways during the formation of the engineered tissue. Furthermore, the simultaneous application of different types of signals appears to elicit synergistic responses that are likely to improve functional outcomes, which could help translate results into successful clinical therapies in the future.

9.
J Biomater Appl ; 37(8): 1341-1354, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36331116

RESUMEN

The developing fetus is wrapped by a human amniotic membrane or amnion. Amnion is a promising human tissue allograft in clinical application because of its chemical composition, collagen-based, and mechanical properties of the extracellular matrix. In addition, amnion contains cells and growth factors; therefore, meets the essential parameters of tissue engineering. No donor morbidity, easy processing and storage, fewer ethical issue, anti-inflammatory, antioxidant, antibacterial, and non-immunogenic properties are other advantages of amnion usage. For these reasons, amnion can resolve some bottlenecks in the regenerative medicine issues such as tissue engineering and cell therapy. Over the last decades, biomedical applications of amnion have evolved from a simple sheet for skin or cornea repair to high-technology applications such as amnion nanocomposite, powder, or hydrogel for the regeneration of cartilage, muscle, tendon, and heart. Furthermore, amnion has anticancer as well as drug/cell delivery capacity. This review highlights various ancient and new applications of amnion in research and clinical applications, from regenerative medicine to cancer therapy, focusing on articles published during the last decade that also revealed information regarding amnion-based products. Challenges and future perspectives of the amnion in regenerative medicine are also discussed.


Asunto(s)
Amnios , Medicina Regenerativa , Humanos , Amnios/química , Ingeniería de Tejidos , Piel
10.
Chemosphere ; 287(Pt 3): 132243, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34537453

RESUMEN

Salmonella is one of the most prevalent causing agents of food- and water-borne illnesses, posing an ongoing public health threat. These food-poisoning bacteria contaminate the resources at different stages such as production, aggregation, processing, distribution, as well as marketing. According to the high incidence of salmonellosis, effective strategies for early-stage detection are required at the highest priority. Since traditional culture-dependent methods and polymerase chain reaction are labor-intensive and time-taking, identification of early and accurate detection of Salmonella in food and water samples can prevent significant health economic burden and lessen the costs. The immense potentiality of biosensors in diagnosis, such as simplicity in operation, the ability of multiplex analysis, high sensitivity, and specificity, have driven research in the evolution of nanotechnology, innovating newer biosensors. Carbon nanomaterials enhance the detection sensitivity of biosensors while obtaining low levels of detection limits due to their possibility to immobilize huge amounts of bioreceptor units at insignificant volume. Moreover, conjugation and functionalization of carbon nanomaterials with metallic nanoparticles or organic molecules enables surface functional groups. According to these remarkable properties, carbon nanomaterials are widely exploited in the development of novel biosensors. To be specific, carbon nanomaterials such as carbon nanotubes, graphene and fullerenes function as transducers in the analyte recognition process or surface immobilizers for biomolecules. Herein the potential application of carbon nanomaterials in the development of novel Salmonella biosensors platforms is reviewed comprehensively. In addition, the current problems and critical analyses of the future perspectives of Salmonella biosensors are discussed.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Nanoestructuras , Nanotubos de Carbono , Humanos , Salmonella , Suelo , Agua
11.
Int J Biol Macromol ; 192: 258-271, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34627845

RESUMEN

Spider silk, as one of the hardest natural and biocompatible substances with extraordinary strength and flexibility, have become an ideal option in various areas of science and have made their path onto the biomedical industry. Despite its growing popularity, the difficulties in the extraction of silks from spiders and farming them have made it unaffordable and almost impossible for industrial scale. Biotechnology helped production of spider silks recombinantly in different hosts and obtaining diverse morphologies out of them based on different processing and assembly procedures. Herein, the characteristics of these morphologies and their advantages and disadvantages are summarized. A detailed view about applications of recombinant silks in skin regeneration and cartilage, tendon, bone, teeth, cardiovascular, and neural tissues engineering are brought out, where there is a need for strong scaffolds to support cell growth. Likewise, spider silk proteins have applications as conduit constructs, medical sutures, and 3D printer bioinks. Other characteristics of spider silks, such as low immunogenicity, hydrophobicity, homogeneity, and adjustability, have attracted much attention in drug and gene delivery. Finally, the challenges and obstacles ahead for industrializing the production of spider silk proteins in sufficient quantities in biomedicine, along with solutions to overcome these barriers, are discussed.


Asunto(s)
Proteínas de Artrópodos/química , Bioingeniería , Biotecnología , Seda/química , Arañas/química , Animales , Proteínas de Artrópodos/biosíntesis , Proteínas de Artrópodos/genética , Bioingeniería/métodos , Biotecnología/métodos , Fenómenos Químicos , Sistemas de Liberación de Medicamentos , Fenómenos Mecánicos , Impresión Tridimensional , Proteínas Recombinantes , Medicina Regenerativa , Ingeniería de Tejidos
12.
Protein J ; 40(5): 786-798, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34023982

RESUMEN

With the increasing dominance of monoclonal antibodies (mAbs) in the biopharmaceutical industry and smaller antibody fragments bringing notable advantages over full-length antibodies, it is of considerable significance to choose the most suitable production system. Although mammalian expression system has been the preferred choice in recent years for mAbs production, E. coli could be the favorable host for non-glycosylated small antibody fragments due to the emergence of new engineered E. coli strains capable of forming disulfide-bonds in their cytoplasm.In this study, non-glycosylated anti-TNF-α Fab' moiety of Certolizumab pegol, produced by periplasmic expression in E. coli in previous studies, was produced in the cytoplasm of E. coli SHuffle strain. The results indicated that it is biologically functional by testing the antigen-binding activity via indirect ELISA and inhibition of TNF-α induced cytotoxicity using MTT test. Major factors affecting protein production and, optimized culture conditions were examined by analyzing growth characteristics and patterns of expression in 24 h of post-induction cultivation and, optimization of culture conditions by response surface methodology considering temperature, time of induction and concentration of inducer in small (tube) and shake-flask scale. Based on the results, temperature had the most significant influence on functional protein yield while exerting different impacts in small and shake-flask scales, which indicated that cultivation volume is also an important factor that should be taken into account in optimization process. Furthermore, richness of medium and slower cellular growth rate improved specific cellular yield of functional protein by having a positive effect on the solubility of Fab' antibody.


Asunto(s)
Biomasa , Certolizumab Pegol , Citoplasma , Escherichia coli , Certolizumab Pegol/biosíntesis , Certolizumab Pegol/genética , Citoplasma/genética , Citoplasma/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas Recombinantes
13.
Microb Pathog ; 154: 104831, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33727169

RESUMEN

The third pandemic of coronavirus infection, called COVID-19 disease, began recently in China. The newly discovered coronavirus, entitled SARS-CoV-2, is the seventh member of the human coronaviruses. The main pathogenesis of SARS-CoV-2 infection is severe pneumonia, RNAaemia, accompanied by glass turbidity, and acute cardiac injury. It possesses a single-stranded positive-sense RNA genome which is 60-140 nm in diameter, and has a size of 26-32 kbp. Viral pathogenesis is accomplished with spike glycoprotein through the employment of a membrane-bound aminopeptidase, called the ACE2, as its primary cell receptor. It has been confirmed that various factors such as different national rules for quarantine and various races or genetic backgrounds might influence the mortality and infection rate of COVID-19 in the geographic areas. In addition to various known and unknown factors and host genetic susceptibility, mutations and genetic variabilities of the virus itself have a critical impact on variable clinical features of COVID-19. Although the SARS-CoV-2 genome is more stable than SARS-CoV or MERS-CoV, it has a relatively high dynamic mutation rate with respect to other RNA viruses. It's noteworthy that, some mutations can be founder mutations and show specific geographic patterns. Undoubtedly, these mutations can drive viral genetic variability, and because of genotype-phenotype correlation, resulting in a virus with more/lower/no decrease in natural pathogenic fitness or on the other scenario, facilitating their rapid antigenic shifting to escape the host immunity and also inventing a drug resistance virus, so converting it to a more infectious or deadly virus. Overall, the detection of all mutations in SARS-CoV-2 and their relations with pathological changes is nearly impossible, mostly due to asymptomatic subjects. In this review paper, the reported mutations of the SARS-CoV-2 and related variations in virus structure and pathogenicity in different geographic areas and genotypes are widely investigated. Many studies need to be repeated in other regions/locations for other people to confirm the findings. Such studies could benefit patient-specific therapy, according to genotyping patterns of SARS-CoV-2 distribution.


Asunto(s)
COVID-19 , SARS-CoV-2 , China/epidemiología , Humanos , Mutación , Glicoproteína de la Espiga del Coronavirus/genética , Virulencia
14.
Infect Genet Evol ; 90: 104773, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33607284

RESUMEN

The third pandemic of coronavirus infection, called COVID-19 disease, was first detected in November 2019th. Various determinants of disease progression such as age, sex, virus mutations, comorbidity, lifestyle, host immune response, and genetic background variation have caused clinical variability of COVID-19. The causative agent of COVID-19 is an enveloped coronavirus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that invades host cells using an endocytic pathway. The SARS-CoV-2 spike protein is the main viral protein that contributes to the fusion of the virus particle to the host cell through angiotensin-converting enzyme 2 (ACE2). The highly conserved expression of ACE2 is found in various animals, which indicates its pivotal physiological function. The ACE2 has a crucial role in vascular, renal, and myocardial physiology. Genetic factors contributing to the outcome of SARS-CoV-2 infection are unknown; however, variants in the specific sites of ACE2 gene could be regarded as a main genetic risk factor for COVID-19. Given that ACE2 is the main site for virus landing on host cells, the effect of amino acid sequences of ACE2 on host susceptibility to COVID-19 seems reasonable. It would likely have a substantial role in the occurrence of a wide range of clinical symptoms. Several ACE2 variants can affect the protein stability, influencing the interaction between spike protein and ACE2 through imposing conformational changes while some other variants are known to cause a decrease or an increase in the ligand-receptor affinity. The other variations are located at the proteolytic cleavage site, which can influence virus infection; because soluble ACE2 can act as a decoy receptor for virus and decrease virus intake by cell surface ACE2. Notably, polymorphisms of regulatory and non-coding regions such as promoter in ACE2, can play crucial role in different expression levels of ACE2 among different individuals. Many studies should be performed to investigate the involvement of ACE2 polymorphism with susceptibility to COVID-19. Herein, we discuss some reported associations between variants of ACE2 and COVID-19 in details. In addition, the mode of action of ACE2 and its role in SARS-CoV-2 infection are highlighted which is followed by addressing the effects of several ACE2 variants on its protein stability, viral tropism or ligand-receptor affinity, secondary and tertiary structure or protein conformation, proteolytic cleavage site, and finally inter-individual clinical variability in COVID-19. The polymorphisms of regulatory regions of ACE2 and their effect on expression levels of ACE2 are also provided in this review. Such studies can improve the prediction of the affinity of mutant ACE2 variations with spike protein, and help the biopharmaceutical industry to design effective approaches for recombinant hACE2 therapy and vaccination of COVID-19 disease.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , COVID-19/virología , Susceptibilidad a Enfermedades , Variación Genética , Interacciones Huésped-Patógeno , SARS-CoV-2/fisiología , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/diagnóstico , COVID-19/metabolismo , Síndrome de Liberación de Citoquinas/etiología , Síndrome de Liberación de Citoquinas/metabolismo , Manejo de la Enfermedad , Interacciones Huésped-Patógeno/inmunología , Humanos , Evasión Inmune , Inmunidad Innata , Polimorfismo de Nucleótido Simple , Pronóstico , Unión Proteica , Receptores Virales/metabolismo , Índice de Severidad de la Enfermedad
15.
Biomed Mater ; 16(2): 025009, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33434897

RESUMEN

Core-sheath nanofibrous scaffolds from polyvinyl alcohol (PVA)-strontium ranelate (SrR)-Polycaprolactone (PCL) were prepared by water in oil electrospinning method. Thus, PCL (the oil phase) was used as the shell part and a mixture of PVA and SrR (the water phase) was inserted in the core. The amounts of SrR was varied from 0 to 15 wt.% Mussel-inspired dopamine-gelatin coating was done on the nanofibrous to improve their hydrophilicity and cellular attachment. The effect of the SrR content on morphology, mechanical, physicochemical, in vitro release behaviors, and biological properties as well as in vivo bone regeneration was investigated. Morphological observations revealed that continuous nanofibers with a core/shell structure were successfully obtained and the fibers diameter increased as the SrR content rose. X-ray diffraction (XRD) analysis revealed that SrR was molecularly distributed in the nanofibers and increasing the amount of the SrR decreased the crystallinity of the nanofibers. Moreover, the SrR release was regulated through the mechanism of Fickian diffusion and it was assumed as fast as possible in the samples with higher SrR content. The mesenchymal stem cell culturing showed improved cell proliferation by adding SrR and accelerating the expression of ALP, Runx2, Col I, and OCN genes. Besides, the SrR-loaded nanofibers improved bone formation of calvarial defects in a rat model as revealed by in vivo investigations.


Asunto(s)
Regeneración Ósea , Sustitutos de Huesos/química , Emulsiones , Nanofibras/química , Poliésteres/química , Alcohol Polivinílico/química , Tiofenos/química , Animales , Bivalvos , Huesos/metabolismo , Adhesión Celular , Diferenciación Celular , Proliferación Celular , Técnicas In Vitro , Masculino , Células Madre Mesenquimatosas/citología , Osteogénesis/efectos de los fármacos , Ratas , Ratas Wistar , Espectroscopía Infrarroja por Transformada de Fourier , Ingeniería de Tejidos , Andamios del Tejido/química , Viscosidad , Agua/química , Difracción de Rayos X
16.
Sci Rep ; 9(1): 16006, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31690816

RESUMEN

Cardiovascular progenitor cells (CPCs) derived from human pluripotent stem cells (hPSCs) are proposed to be invaluable cell sources for experimental and clinical studies. This wide range of applications necessitates large-scale production of CPCs in an in vitro culture system, which enables both expansion and maintenance of these cells. In this study, we aimed to develop a defined and efficient culture medium that uses signaling factors for large-scale expansion of early CPCs, called cardiogenic mesodermal cells (CMCs), which were derived from hPSCs. Chemical screening resulted in a medium that contained a reproducible combination of three factors (A83-01, bFGF, and CHIR99021) that generated 1014 CMCs after 10 passages without the propensity for tumorigenicity. Expanded CMCs retained their gene expression pattern, chromosomal stability, and differentiation tendency through several passages and showed both the safety and possible cardio-protective potentials when transplanted into the infarcted rat myocardium. These CMCs were efficiently cryopreserved for an extended period of time. This culture medium could be used for both adherent and suspension culture conditions, for which the latter is required for large-scale CMC production. Taken together, hPSC-derived CMCs exhibited self-renewal capacity in our simple, reproducible, and defined medium. These cells might ultimately be potential, promising cell sources for cardiovascular studies.


Asunto(s)
Sistema Cardiovascular/citología , Medios de Cultivo/metabolismo , Células Madre Pluripotentes/citología , Animales , Sistema Cardiovascular/metabolismo , Diferenciación Celular , Proliferación Celular , Medios de Cultivo/química , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Humanos , Masculino , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/terapia , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/trasplante , Pirazoles/metabolismo , Piridinas/metabolismo , Pirimidinas/metabolismo , Ratas , Ratas Wistar , Tiosemicarbazonas/metabolismo
17.
Int J Biol Macromol ; 140: 278-287, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31400428

RESUMEN

Conductive scaffolds are suitable candidates for cardiovascular tissue engineering (CTE) due to their similarity to the extracellular matrix of native tissue. Here, nanofiber scaffolds based on polyvinyl alcohol (PVA), chitosan (CS), and different concentrations of carbon nanotube (CNT) were produced using electrospinning. Scanning electron microscopy (SEM) image, mechanical test (elastic modulus: 130 ±â€¯3.605 MPa), electrical conductivity (3.4 × 10-6 S/Cm), water uptake, cell adhesion, and cell viability (>80%) results of the PVA-CS-CNT1 scaffold revealed that the nanofiber containing 1% of CNT has optimal properties for cardiac differentiation. Afterwards, the differentiation of rat mesenchymal stem cells (MSCs) to cardiomyocytes was performed on the optimal scaffold by electrical stimulation in the presence of 5-azacytidine, TGF-ß and ascorbic acid. The real-time qPCR results indicated that the expression of Nkx2.5, Troponin I, and ß-MHC cardiac marker was increased significantly (>3 folds) in comparison to control group. Based on the findings of this study, the incorporation of MSCs, conductive scaffolds, and electrical stimulation seem to be a promising approach in CTE.


Asunto(s)
Materiales Biocompatibles/química , Quitosano/química , Nanofibras/química , Nanotubos de Carbono/química , Alcohol Polivinílico/química , Ingeniería de Tejidos , Andamios del Tejido , Animales , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Módulo de Elasticidad , Conductividad Eléctrica , Masculino , Células Madre Mesenquimatosas/fisiología , Miocitos Cardíacos/fisiología , Ratas
18.
Cell J ; 20(4): 496-504, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30123995

RESUMEN

OBJECTIVE: Cardiovascular progenitor cells (CPCs) are introduced as one of the promising cell sources for preclinical studies and regenerative medicine. One of the earliest type of CPCs is cardiogenic mesoderm cells (CMCs), which have the capability to generate all types of cardiac lineage derivatives. In order to benefit from CMCs, development of an efficient culture strategy is required. We aim to explore an optimized culture condition that uses human embryonic stem cell (hESC)-derived CMCs. MATERIALS AND METHODS: In this experimental study, hESCs were expanded and induced toward cardiac lineage in a suspension culture. Mesoderm posterior 1-positive (MESP1+) CMCs were subjected to four different culture conditions: i. Suspension culture of CMC spheroids, ii. Adherent culture of CMC spheroids, iii. Adherent culture of single CMCs using gelatin, and iv. Adherent culture of single CMCs using Matrigel. RESULTS: Although, we observed no substantial changes in the percentage of MESP1+ cells in different culture conditions, there were significantly higher viability and total cell numbers in CMCs cultured on Matrigel (condition iv) compared to the other groups. CMCs cultivated on Matrigel maintained their progenitor cell signature, which included the tendency for cardiogenic differentiation. CONCLUSION: These results showed the efficacy of an adherent culture on Matrigel for hESC-derived CMCs, which would facilitate their use for future applications.

19.
IET Syst Biol ; 13(2): 77-83, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33444476

RESUMEN

Human pluripotent stem cell-derived cardiovascular progenitor cells (CPCs) are considered as powerful tools for cardiac regenerative medicine and developmental study. Mesoderm posterior1+ (MESP1+ ) cells are identified as the earliest CPCs from which almost all cardiac cell types are generated. Molecular insights to the transcriptional regulatory factors of early CPCs are required to control cell fate decisions. Herein, the microarray data set of human embryonic stem cells (hESCs)-derived MESP1+ cells was analysed and differentially expressed genes (DEGs) were identified in comparison to undifferentiated hESCs and MESP1-negative cells. Then, gene ontology and pathway enrichment analysis of DEGs were carried out with the subsequent prediction of putative regulatory small molecules for modulation of CPC fate. Some key signalling cascades of cardiogenesis including Hippo, Wnt, transforming growth factor-ß, and PI3K/Akt were highlighted in MESP1+ cells. The transcriptional regulatory network of MESP1+ cells were visualised through interaction networks of DEGs. Additionally, 35 promising chemicals were predicted based on correlations with gene expression signature of MESP1+ cells for effective in vitro CPC manipulation. Studying the transcriptional profile of MESP1+ cells resulted into the identification of important signalling pathways and chemicals which could be introduced as powerful tools to manage proliferation and differentiation of hESC-derived CPCs more efficiently.

20.
Acta Biomater ; 72: 16-34, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625254

RESUMEN

The science and engineering of biomaterials have improved the human life expectancy. Tissue engineering is one of the nascent strategies with an aim to fulfill this target. Tissue engineering scaffolds are one of the most significant aspects of the recent tissue repair strategies; hence, it is imperative to design biomimetic substrates with suitable features. Conductive substrates can ameliorate the cellular activity through enhancement of cellular signaling. Biocompatible polymers with conductivity can mimic the cells' niche in an appropriate manner. Bioconductive polymers based on aniline oligomers can potentially actualize this purpose because of their unique and tailoring properties. The aniline oligomers can be positioned within the molecular structure of other polymers, thus painter acting with the side groups of the main polymer or acting as a comonomer in their backbone. The conductivity of oligoaniline-based conductive biomaterials can be tailored to mimic the electrical and mechanical properties of targeted tissues/organs. These bioconductive substrates can be designed with high mechanical strength for hard tissues such as the bone and with high elasticity to be used for the cardiac tissue or can be synthesized in the form of injectable hydrogels, particles, and nanofibers for noninvasive implantation; these structures can be used for applications such as drug/gene delivery and extracellular biomimetic structures. It is expected that with progress in the fields of biomaterials and tissue engineering, more innovative constructs will be proposed in the near future. This review discusses the recent advancements in the use of oligoaniline-based conductive biomaterials for tissue engineering and regenerative medicine applications. STATEMENT OF SIGNIFICANCE: The tissue engineering applications of aniline oligomers and their derivatives have recently attracted an increasing interest due to their electroactive and biodegradable properties. However, no reports have systematically reviewed the critical role of oligoaniline-based conductive biomaterials in tissue engineering. Research on aniline oligomers is growing today opening new scenarios that expand the potential of these biomaterials from "traditional" treatments to a new era of tissue engineering. The conductivity of this class of biomaterials can be tailored similar to that of tissues/organs. To the best of our knowledge, this is the first review article in which such issue is systematically reviewed and critically discussed in the light of the existing literature. Undoubtedly, investigations on the use of oligoaniline-based conductive biomaterials in tissue engineering need further advancement and a lot of critical questions are yet to be answered. In this review, we introduce the salient features, the hurdles that must be overcome, the hopes, and practical constraints for further development.


Asunto(s)
Compuestos de Anilina , Materiales Biocompatibles , Materiales Biomiméticos , Sistemas de Liberación de Medicamentos/métodos , Técnicas de Transferencia de Gen , Transducción de Señal/efectos de los fármacos , Ingeniería de Tejidos/métodos , Compuestos de Anilina/química , Compuestos de Anilina/farmacología , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Nanofibras/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...